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A Parallel Divide and Conquer
Algorithm for the Generalized Real

Symmetric Definite Tridiagonal
Eigenproblem

Carlos F. Borges*and William B. Graggt

Abstract.
We develop a parallel divide and conquer algorithm, by extension, for the generalized

real symmetric definite tridiagonal eigenproblem. The algorithm employs techniques
first proposed by Gu and Eisenstat to prevent loss of orthogonality in the computed
eigenvectors for the modification algorithm. We examine numerical stability and adapt
the insightful error analysis of Gu and Eisenstat to the arrow case. The algorithm
incorporates an elegant zero finder with global monotone cubic convergence that has
performed well in numerical experiments. A complete set of tested matlab routines
implementing the algorithm is available on request from the authors.

1 Introduct'on

We consider the problem of finding a matrix U E K'" such that

U T (T - SA) U -= A - IA,

is diagonal, or equivalently

UTSU = I and UTTU = A, (1)

where
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borgesOwaylon.math.nps.uavyjntii

a Authors address: Code Ma/Gr, Naval Postgradate School, Monterey, CA 93943. Email:
gragg~guinness.inath.nps.navy.nul
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and S is assumed to be positive definite. This generalized eigenvalue problem has
two special cases that are of interest in themselves. They are:

1. S = 1, the ordinary tridiagonal eigenproblem.

2. S = I and oa (j, the bidiagonal singular value problem (Bsvp), by perfect
shuffle of the Jordan matrix

10 BT

with B upper bidiagonal [16].

There are two phases to the divide and conquer algorithm, the divide (or split)
phase, and the conquer (or consolidate) phase. We shall address these in order.

2 The algorithm

2.1 The divide phase

Denote by ej the ith axis vector where the dimension will be clear from the context.
Let s, I < s _< n, be an integer, the split index, and consider the following block
forms:

r T, e._. 1
T = [0,,- 0.eT I

ejjO, T:

S = 7,- leTj 6. 7.eT .
e17,0 S2

Note that e = n is possible; then T2 , S2 , and el are empty [9, 10). Suppose we
solve the subproblems

UT(Tk - SkA) Uk Ak - IA (k-= 1,2). (2)
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The form of the subproblems is preserved. In particular, the matrices S1 are
positive definite and, if T has a zero diagonal, so do the matrices Tk. Let

U/2

Then

OT (T - SA) 0 =
S UT(Ti - Si A) U UlTe.-.(1h.. -7 .'-A) 1

I (/,- - 7,-iA)eT_.IU1 a. - 6,A (13,- ',A)e*U 2  •

LU~e I(1A - t,,\) U14(T2 - S2A)U2 J

2.2 The conquer phase

The conquer phase consists of solving the subproblems (2) from the divide phase,
consolidating the solutions, and finally, solving the consolidated problem. Let

u --- IU~e,-1, U2 =Ul~el,

where the Uk are solutions to (2). Then

OT (T -SA) - (/,I-7-Au ,6,A (/,- 7A)uI .

u2(fl. - Y, ) A2 - A
The right side is the sum of a diagonal and a Swiss cross:

(IT(T- SA)C= z + x +

This can be permuted to an arrow matrix by a permutation similarity transfor-
mation with P. = [ej,e2, .- ,e,-t,e,+t ... ,e,,e,]. Thus

OeOssio For

A(A) := OT (T - SA) 0Ps $ RA&i

Al  1u -I1 'TAB ci
A2  u 2/0, - I u27# A trMI onoed 3

2 [ [ U IT -Y. Ur bt
D Bu I Cu ,

utT B at UT C 7
with .ributo _ j,,

f lAbliity Cedes

Dst DOlal

'•.., -," Auam i ajj
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U 2U

12B ~ ~ ~ 1 Old C V -1YI

Since S and I UT Cu ] are congruent the latter inherits positive definiteness

from the former. Its Cholesky decomposition is

[I CU] [ ][ C]=~ CC =RTR,

with p2 = - uTC 2 u > 0 the Schur complement in S of

LIS2
Now

R-1 I Cu/P]

and a second congruence transformation with R-1 gives

A(A) R-r.A(A)R-'
R -_TT BD Bui R-' - ,X

I R XT[ B Q]RI A

" D wT A A -Al

with

(B - DC) i
p

, -T (2B - DC) Cu
p 2

We have reduced the conquer step to the problem of solving an ordinary eigen-
problem for a symmetric arrow matrix. If V is an orthogonal matrix with

AV = VA

and A diagonal, then (1) holds with

U = UPR-IV= [VU, -Uiury._.,/p~lp V

I/ -V
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It is useful that vk = Ukuk can be computed in O(n) time by solving Svy1 =
e.-.1 and S2 v 2 = el using the Cholesky factorization S, = LILT and the reverse
Cholesky factorization S2 = L L2 . In the case that only the eigenvalues are
wanted it is only necessary to compute the first and last rows of the U-matrices
which constitutes a further savings.

In summary, the conquer phase proceeds by consolidating the subproblems and
building a full eigenproblem for an arrow matrix.

3 Solving the eigenproblem for the arrow

In this section we consider the solution of the eigenproblem for a real symmetric
arrow matrix

A= (bT ")

where A E Rn Xfl is symmetric, D = diag(a), a = [a1 , I a. >_ cr2 > ... >
an-1, and b = [/, ., 1 1 T > 0. When A arises from the BSVD then a is odd
and b is even, that is a + Ja = 0 and b = Jb, with J the counter-identity, the
identity matrix with its columns reversed, and - = 0.

If any f# = 0 then it is possible to set Aj = aj and deflate the matrix since
ej is clearly an eigenvector [28). We shall call this O-deflation and note that if
,j < tolhjblJ where told is a small tolerance then a numerical deflation occurs.
We derive a precise value for tolij in section 4.4.

A second type of deflation occurs if applying a 2 x 2 rotation similarity trans-
formation in the (j, j+ 1)-plane that takes Oj to zero introduces a sufficiently small
element in the (j, j+ 1) position of the matrix. This will be called a combo-deflation
(see [151). At each consolidation step we perform a sweep to check for #-deflations
followed by a sweep to check for coynbo-deflations. The combo-deflation can be
arranged so that the ordering of the aj is preserved whenever one occurs. After

deflation the new I:= j + /+i> Žfl+i and hence no further #-deflation
can occur. The combo-deflations can be disposed of with a single pass by backing
up a single element whenever one occurs. Note that deflation is backward stable
since it results in small backward errors in A. Deflation for the BSVD is more
delicate involving a simultaneous sweep from both ends of the matrix. Care must
be exercised at the center of the matrix.

After deflation the resulting matrix can be taken to have all Oj > 0 and the
elements of the arrow shaft distinct and ordered, that is ac > a 2 > ... > an-1.
An arrow matrix of this form will be called ordered and reduced. Henceforth, we
shall assume A is of this form.

The block Gauss factorization of A - Al is
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1 0 D-Al b
A-Al bT(D-AI)l ) jI OT -f(A)

where f, the spectral function of A, is given by

f(A) = A- -Y + E
j=1

This is a rational Pick function with a pole at infinity [1]. The most general form
of a rational Pick function is

A(•) = 6A-'v+Z - 6>o. (3)

In relation to the various divide and conquer schemes, the case 6 > 0 corresponds
with eztension, 6 = 0 with modification, and 6 = 7 = 0 with restriction [7].

Inspection of the graph of the spectral function reveals that the elements of
the shaft interlace the eigenvalues

A] > (VI > A2 >...- > Qn1 > An- (4)

Moreover, in the present case, the derivative of the spectral function is bounded
below by one so that its zeros are, in a certain sense, well determined.

3.1 The zero finder

The fundamental problem in finding the eigenvalues of an arrow is that of providing
a stable and efficient method for finding the zeros of the spectral function. We
now examine this problem in some detail.

The zero finding algorithm we present is globally convergent in the sense that
the iteration will converge to the unique zero of f in (aLa, atk-.) from any starting
value in the closed interval [k., ak-.], where we put a•0 = +o and a, = -oo.

The zero finder converges monotonically at a cubic rate and applies to a general
Pick function as given in formula (3).

3.2 Interior intervals

The iterative procedure for finding the unique zero of f in one of the interior
intervals ((k,ak-1) proceeds as follows. Let zo, "k < zo < ak_1, be an initial
approximation to Ak. If rj is known choose

_(_) __+ +

so that
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€• (x) -=f(')(xi), i = O,1,2. (5)

Thus a, wo, and w, must satisfy

0 (ak-I )-2 (ak - Xc)'2 1o f=(Xz)
0 (tk- r-j )-3 (ak _T)- w3 W f'(z" j)

(I~ I [~Y (ai 1 =~) i J f(I )j

and we find

a' = 3x - (-y+ok-i + Ok) + X1i -? :k-l Cki

ujk-I,k ai- Xi j - Xj Vi- -j

WO= 21 +(fLIk. XA " ai - ak'

i(Ak-lXti ± ? a Vi

Since w0 > 0 and w1 > 0 it follows that oj is a Pick function. Thus Oj has a
unique zero xj+I E (a L, akL-). Also

1,o > /•j_ ý > 0 > j32>/ > 0.

The error function

(X)-O(x)=x-( h+')+ •) ,- a;-W- +
ik-,k-I 

k-

has n zeros, counting niultiplicities. There are n-3 zeros exterior to (ak, or_.-1) and
three more at xj. Thus the error function crosses zero exactly once in the interval

(akak_1). Hence xj+i lies between xj and Ak, and the iteration is monotonically
convergent from any starting guess 2-o0 E [Ok, ark-1) as claimed. The cubic rate of

convergence follows from (5).
Successive iterates can be found by solving quadratic equations. Rather than

solve O,(z) = 0 for zj+l it is better to solve

€j(a.' - A) = 0

for the increment A = zj - xj+,. Some rearrangement using (5) reduces this to

A2 + OA• -- f -- 0, (6)

with
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-- or (7)

S= f'(:j) -(l x-- x+ k-xj j (8)

When shifts of the origin to the nearest pole [15] are used then one of Qk-I or ak
is zero. The computation of = 3(xj) should account for the fact that it has only
simple poles at ak-1 and at.

If we start at the midpoint of the interval, z 0 = (ak -I + ak)/2, then we always
have 0 = A(zj) > f'(xi) > 1. This can be seen by noting that P(x0 ) = f'(Zo)
and that when x0 > ,k then for all of the succeeding iterates f(xj) > 0, by
monotonicity, and ±, + ý ' Ls negative. If xo < Ak a similar argument
applies. It follows that the increment can always be computed stably as

= 2f (9)

3.3 Exterior inte:vals

The treatment of the two exterior intervals is geoinetrically the same as above.
Again, the approximating function has poles at the endpoints and the residues at
these poles, and the constant term, are chosen to satisfy (5). We present the case
for the interval (a 1, oc), the case for the other exterior interval being similar. Now

CtI - X

with

It-I
+ E 13' a+ - -Vi > 1

,='. aj - t) X'• - (,V -

= n - U I
> o-+= X - Uti )

The inequalities are strict, unless n= 2. Again we find (6) where now

X; - Ct1

f (3 .j )Pl=f(Jxi) + Xj - ,,--'--6

These are limiting cases of (7) and (8) ( introduce another pole ao > a, and let
00 - +00). If xu > \, then f(A) > 0 so (3 > f' > 1 and A is again computed
stably using (9). WVe obtain global monotone cubic convergence as before.
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Contrary to the algorithms of 111, 12, 15) our algorithm is well-defined when

starting at the endpoints of the intervals. The algorithm of [23] can start at the

endpoints but has only quadratic convergence.
To guarantee that z0 > AI we take xO to be the iterate in (a,, +oo) from +oo.

As xO - +oo the approximate Pick function tends to

(X) = X -+ jb (10)

Our actual starting guess is the zero of (10) in (cr , +oo):

+/ + + >ai,

{-+ / +

When shifts are used we have o I = 0.

3.4 Orthogonality of the eigenvectors

It is essential that the conmputed eigenvectors of the arrow matrix be numerically

orthogonal. As a point of entry into the furither analysis of the algorithm we now
examine the orthogonality of the eigenvectors followilg [15].

Consider the divided difference

f(A ~ f (A) - f- 00________ 
(ii)fA,1-+1: i (11)

j=( 1  -A)(nj )

= + t)T(D - A)-'(D -t)-lb.

Note that p = A gives f'(A) = I + Ii(D - ,I)- hlj•. If f(A) = 0 then

v(A) [ ~ - (Al - D)-'b]v(,A) A 1 0 1

is an eigenvector of the arrow zr Atrix A = 1) associated with tTe eigen-

value A, and

t,(A(A)

is the normalized eigenvector whose last cloiiient is positive. The ordering of A

implies that its matrix of eigenvectors cati be taken positive below and on the

diagonal, and negative above.
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Let f(Ao) = f(pi0 ) = 0 with A• ý jiu, Thus Au and po are distinct eigenvalues
of A. The eigenvectors t(Au) and u(I•o) are orthonorinal:

u(Ao)7"uC(,tp) = f(Ao, po) = 0.

Let A and p be approximate eigenvalues in time sense that

-6 A - A- , 6

-A- , +6'

(12)

(It -J, 1 +6
Here 6 > 0 is hopefully, bmt iit n cvcýsarify, cluse to the miachine uiiit c. Note that
(12) is equivalent. with

A - A (I - it,

These conditions imply that Ith appruxincate eigcnvectors u(A) and u(p) are
nearly orthogonal. For we have,

Vf77(A)f'(P)uA)7"u(/,) = f(A, p,) f(Au, p(u)
'- ' z j-. (n"- A)(c•- .o

k -c,,o - p)- -

3=[T

- (,,j -A)(,-m -- )

Since

26 62
+ 6, + 26

then

\/f'(7)/'(A,),,C ,,,) = 261h" () - AI)-'O(D- it)-1b

with 10 _< 1. Thus

v/'TT~f'JiU)1u A)Tiip= "2II(D - Al)- ' I)11t(D - pJ)-'btl2.
and so

I u(A)Tu(Io) < 26.

Condition (12) is stringent. If we let ih. - 0 then it is easy to show that A
can have an eigenvalue A0 = A 0(,Y4ý) = oL + O(/3j); (12) then requires that the
approximate eigenvalue A salisfies a bound
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JA - A0, _< 0(6;12),

which is difficult if Ok/l flil is o0ly somewi:a largv'r than machine precision, say
C3/4. Two techniques are used to att-?,'pt to satisfy (12) - shifts of the origin [15],
and simulated extended precision (sEP) arithimetic [26, 141. Condition (12) means
that

JA- A0j < 6 min{Ao - "•., i.-I - Aol.

When shifts are used it means that A is niarly fl(Ao).

4 Numerical stability of the algorithm

We now give a partial analysis of the stabilhiy of this approach to the eigenproblem
for the symmetric arrow matrix. Observe t[h:a

f(A) - -p(A) , - n (A A j)

The following inv•rse eigenvaltmu problcmn [6] is important: given {a. } and {Aj)
satisfying (4), find {13j) and( I, so that A(A) = {Aj }. This problem is simply solved
by computing the residues of the partial fraclion decomposition of f. In particular

".- "(AJ)

7= A - _____._

-T-=

j=1 )=I

For fixed {fj }, the elements of the arrow buad, {Jh ammid -, are explicitly known
functions of the eigenvalues.

Now let {A,} be a set. of appriomiunnm e•ignvalues of A satisfying (4). Then

i3•,l-= ,(" L - A,)
oi - 0( >0), (13)

= - ,(14)
j=l *j=i

define a modified matrix A with A(A) = {A3}. To obtain a backward error analysis

for the complete eigenvalue problem we bumid the differences ýk - flk and ; - 7.
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r

4.1 Error analysis for the Don garra-Sorensen condition

We give an error analysis usIitig th, l)oizgarra-Sorensen condition

As - ,

, A = b,.. - 16j, LI S 6, (15)

where 6 = 0(() is of the order of the ciadiinc mnit, siuplifying that in [6].
Rearrangement of (15) gives

0t - .= (A - W,)(l + 6 jk).

It follows that

=.di. * 1+flu .)=;i + j.k )

and

with the b6,k and 6J7 at most only slightly larger than the 6i,k. Thus

14i, - 3k. < 16 11,

where 6" = 0(t) i.s oinly slightly ltor, r than c.
Now (14) bevoitv-,

= ~+ >3(A1
j=I

with Ok(ji OWe of hle poles of f. Thlis

2=1

To minimize this bound we chot.is, rq~j) to be a pole off closest to Aj. Clearly,
ak(i) =(iI and Ca .(,) = 0 SOi

- ((A1, i + [Aj t~t + (~~ 1 -A)

For I < j < na a closest pole to Aj is either flj or j 1 The distance

IA1 - ni.,J = win {Aj - fl1,ctj_ - A})



(;eIirMiazed Divide and Conquer 13

is maximized when Ai is the tidtpuit. of the it erval (o, o J1), and tile value of
the maximum is (a, + aj-t)/ 2 . Thus

< b(At(k +2 ij- - fi ) + (o,- -Ai

- 6 (A A, (
J-2

_ (Al -4 Ar) 26Kj--",,-

In summary, the Dongarra-Sorense -, couidit ti imiil.es small relative errors in
each fk and a small absolute error iii ý. I Vr ite Hs\'I) this implies small element-
wise relative errors since the condiion ou = - = I is enforced by Aj + A,+ 1 -. = 0
(only half of the eigenvalue-s are act utally cotiputed, t he re't follow from this con-
dition).

4.2 Rounding error analysis of the computation of f(A)

The choice of a termination criterion del0-ciu H,1 ' careful rotunding error anal-
ysis of the particular mratnner it which wem. t'ttlut,' f(A). Let {Jai}, {fl), and 'Y
be floating point numbers. We r-eprc.-cifl A as the ordered pair of floating point
numbers (a, p) where the shift a is a pole d-ost to A, aild A := a + p. For the
exterior intervals we have a = (I or a = .,, -. For t li, interior intervals a' can be
determined by evaluating f at flt. m id puin•i ad a lntil~ i og the sign. We compute
f(A) as

n--

f., 00, + (, -'

with the standard operatioit pre'ethviwe ride,., whur,

0I = cj - a amd c=r--".

We use Wilkinson's notation: fi(.r * yj) (j' * y)(I + b) with 161 < (/(1 + c)
and f = 2'' the machine unit. More getierally, ( (letiotcs tutmbers not essentially
larger than 2-' [27] and the rounding errors 6 satisfy 161 <

We define

flCaj - A) := fI(,' - ) = fl((j - a) -

If a' = ka then

fl(ok - A) = Ok - ,

with no rounding error. For j k$
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fl(j- A) = (,- A) I + +- A

and since ok is a pole chmtst to A Ihell [ < 2. Thus all terms aj - A are

computed with stiall relhivte err,,-

f((- A) = (,,- A)(I + <) VAl< . (16)

When computing f(A) = f x(vc) a,.tld IhOw temr A - = (A c)- ( - a) last.

A routine error analysis using (1(i) .am

lA - -,I S Ijj'A)I + • 1•-h

to eliminate the term JA - -1 1 fr,m hli. error huumd gives

ift(f(A)) - f(A)j I •' (A)I + I a - AfI + (?I + -5) E . Al

which implies

lft(f(A))l< :(S + +S )lf(.) i ± - Al + (,, + E t- ) (17)

4.3 Termihiation

Our goal is to chouos, a itrtiuh•;s ii le-Ii ,rist, (.i Ihat we stop when A is as close
to the true eigenvalt AL. a s' ... I,"t' p AL- h1i (01) with f(Ak) = 0. Now
ak < Ak < (t4-1. A sk II ',i A (. 'liht lt Irh termis Ok - A and oj -- Ak

have the saite sign muid

JA - Ajl < lf(A)l (18)
I + .. l I,, • ,, - k

To obtain an upper bound for IA - Ak, I we it-ed an upper bound for If(A)I and a
lower bound for the denominatour. I;ur the hlater we have

"I- l(,J - All,,i - ,.I + maxi ,"j - ,X, (

Let us determine how small lf(A)l is whit A is the roundcd representation of
Ak. This is
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a +P+f1j T+.)= 1+40(l +6)
= A4- + lui = A,• + (A•. - a)b

and we have

1( - = nz - Ad.

Thus

E"' (11 - \")(,t•j :- )!IA[= lA-A,1 (I+

= I~o~ Ak ) ~A)(',, - Ak))

From (17),

[lf ( I( A)) < f la r- A k][ + 1 A " + (it + 3j!•'-

Since Ak - = tA - a)/( + a) 1hi

ifI '(f (J )im ,•1-(T + (i ,t + t;) - ". ,
) = i, - Al)

We terminate and set )• := A 4. eu

jfI(f(A))f < 2 21A- a!+(,,+(6) Al

Inequality (17) also hold.s if f(A) arid flj.(A})) arv, iw,'rchaiiged. Thus

I/(Aoi S, ,Ik + o:o, ÷ -T)• (20)

- = 1, • - )
From (18) and (19)

-" - I a

"'- A1  + (:3, + 17) -_
Ak - Ak.I .< , , ax IA4. - ,.,I

$ II;1N, i,\L - n ij I + = ,-
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Since ka-A.j :l_ ja-A.I+ A;1- -•[ aid t -As.f _ naxa lk -AkI the computed
eigenvalues sati.Jfy

JAk - Ak I_ (3n + I7)t max Ij - ALI
j

(;(It + 6)(11411.'q ' (21)

4.4 Error analysis for the Gu-Eisenstat condition

From - = "=>(Aj - A,) ;II, (21) w' find

I - < _ (,,(, + 6), 11.112,

We have noted thai tle I), ,iyi i-r;r-.Sortvn,'i ,il(ition (15) is stringent. It is

natural to ask for siztall I,.(,tuil, , ij lit, ili.. If we replace 6J,k by 6bj,k/fk in
the analysis in sect ion 4.1 we lind ih.,t

I t~
13L h IJ•L. ; . -= = 3k + k '1i,.,

and

- iI +0(

are implie(d by tin G(;.-L't.,, ,ta 1, 4 ,,hin,,,,

A., -- 
<j

We must bound 6.
From (20)

-Ak + ( -A - Ak AI) < ( 6 -" +Zj= j,=,I" - I

with rn = 3(n + 6). Usi,,g

and the Giu-Eisenstat invqiualiI.\

we, - AetI (n - A)(tj - Ak)
we get
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j~~~k ~ -~ ((ii :5I 4 7

1(A - _< ,,,,A,. A- r.+, - .A

where c has been increased to t/(I - w,, }
By Cauchy's inequality.

/ , I,- , J)

_ 4 - ., +-

for every j. The arithmlhenc-g,,,ii,.i ii•c f .i , i ,,.•wjwuli :t•it the lrianigle inequality
yield

++,,i" ,,: _ Akl. + .•IAA. Ak-I ))JAL. - 4.1 <5 ,, 1A,. - 0•1 + Ad--7 1A- A

Thus

IA- -Ad :S I, 7 + - ).kI li4. )

1 2 - A] - <•- + JAL- c-lI ]

3 1,l,-, I - ib.
<-- , A4.1

.I

If mclIbl, < j4 for all j, then,

and consequently

Thus Lold is in. If i3L. < :ien + 6), I[/i %N, rcp1hl', 1,14. Iby zro and accept ak as
an eigenvalue with normalized eigeIiVe.tr Vt..

The computed eigenveciors of m, ar, ;&, i i,, h, tho., (if the nearby matrix A.
Because of (13) anl (163) the(y are ruii,-ti.id i,, high relat ive precision elementwise
and hence are numerically orthogowdl 1211]
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